PROPERTIES OF TRANSFORMATIONS

Geometry

Chapter 9

Geometry 9

- This Slideshow was developed to accompany the textbook
 - Larson Geometry
 - By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
 - 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy

rwright@andrews.edu

- Transformation
 - Moves or changes a figure
 - Original called preimage (i.e. ΔABC)
 - New called image (i.e. ΔA'B'C')
- Translation
 - Moves every point the same distance in the same direction

Draw ΔRST with vertices R(2, 2), S(5, 2), and T(3, -2). Find the image of each vertex after the translation (x, y) → (x + 1, y + 2). Graph the image using prime notation.

R'(3, 4), S'(6, 4), T'(4, 0)

The image of (x, y) → (x + 4, y - 7) is P'Q' with endpoints P'(-3, 4) and Q'(2, 1). Find the coordinates of the endpoints of the preimage.

P:
$$x + 4 = -3 \rightarrow x = -7$$

 $y - 7 = 4 \rightarrow y = 11$ P(-7, 11)
Q: $x + 4 = 2 \rightarrow x = -2$
 $y - 7 = 1 \rightarrow y = 8$ Q(-2, 8)

- Isometry
 - Transformation that preserves length and angle measure.
 - A congruence transformation

Translation Theorem

A translation is an isometry.

Can be used to describe translations

• Name the vector and write its component form

$$\overrightarrow{RS} = \langle 5,0 \rangle$$

$$\overrightarrow{TX} = \langle 0,3 \rangle$$

$$\overrightarrow{BK} = \langle -5,2 \rangle$$

• The vertices of Δ LMN are L(2, 2), M(5, 3), N(9, 1). Translate Δ LMN using vector $\langle -2,6 \rangle$.

• 576 #2-30 even, 34-40 even, 44, 48-54 even = 24

Translation is $(x, y) \rightarrow (x-2, y+6)$ L'(0, 8), M'(3, 9), N'(7, 7)

Answers and Quiz

- <u>9.1 Answers</u>
- <u>9.1 Homework Quiz</u>

9.2 USE PROPERTIES OF MATRICES

- Matrix
 - Rectangular arrangement of numbers in rows and columns
 - Each number is an element

- Dimension rows x columns
 - 2 x 3

- Write a matrix to represent ΔABC with vertices A(3, 5), B(6, 7), C(7, 3).
- How many rows and columns are in a matrix for a hexagon?

x-coordinates go in first row; y-coordinates go in second row

$$\begin{bmatrix} 3 & 6 & 7 \\ 5 & 7 & 3 \end{bmatrix}$$

2 rows, 6 columns

- Add and Subtract Matrices
 - Dimension must be equal
 - Add corresponding elements

•
$$\begin{bmatrix} 1 & -4 \\ 3 & -5 \end{bmatrix} - \begin{bmatrix} 2 & 3 \\ 7 & 8 \end{bmatrix}$$

$$\begin{bmatrix} -1 & -7 \\ -4 & -13 \end{bmatrix}$$

• The matrix $\begin{bmatrix} 1 & 2 & 6 & 7 \\ 2 & -1 & 1 & 3 \end{bmatrix}$ represents quadrilateral JKLM. Write the translation matrix and the image matrix that represents the translation of JKLM 4 units right and 2 units down. Then find the coordinates of the image.

9.2 USE PROPERTIES OF MATRICES

- Matrix Multiplication
- Matrix multiplication can only happen if the number of columns of the first matrix is the same as the number of rows on the second matrix.
- You can multiply a 3x5 with a 5x2.
 - $3x5 \cdot 5x2 \rightarrow 3x2$ will be the dimensions of the answer
- · Because of this order does matter!

$$\begin{bmatrix} 5 & 1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ -2 \end{bmatrix}$$
$$\begin{bmatrix} 5 \cdot -3 + 1 \cdot -2 \end{bmatrix}$$
$$\begin{bmatrix} -17 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 \\ 0 & -3 \end{bmatrix} \cdot \begin{bmatrix} -2 & 1 \\ 4 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 1 \cdot -2 + 2 \cdot 4 & 1 \cdot 1 + 2 \cdot 3 \\ 0 \cdot -2 + -3 \cdot 4 & 0 \cdot 1 + -3 \cdot 3 \end{bmatrix}$$

$$\begin{bmatrix} 6 & 7 \\ -12 & -9 \end{bmatrix}$$

- 584 #2-32 even, 33, 38-44 even = 21
- Extra Credit 587 #2, 6 = +2

Answers and Quiz

- <u>9.2 Answers</u>
- 9.2 Homework Quiz

- Reflection
 - Transformation that uses a line like a mirror to reflect an image.
 - That line is called Line of Reflection
 - P and P' are the same distance from the line of reflection
 - The line connecting P and P' is perpendicular to the line of reflection

Graph a reflection of ΔABC where A(1, 3), B(5, 2), and C(2, 1) in the line x = 2.

New points are A(3, 3), B(-1, 2), C(2, 1)

- Coordinate Rules for Reflections
 - Reflected in x-axis: (a, b) → (a, -b)
 - Reflected in y-axis: $(a, b) \rightarrow (-a, b)$
 - Reflected in y = x: $(a, b) \rightarrow (b, a)$
 - Reflected in y = -x: $(a, b) \rightarrow (-b, -a)$

Reflection Theorem

A reflection is an isometry.

• Graph \triangle ABC with vertices A(1, 3), B(4, 4), and C(3, 1). Reflect \triangle ABC in the lines y = -x and y = x.

y = -x: new points A(-3, -1), B(-4, -4), C(-1, -3) y = x: new points A(3, 1), B(4, 4), C(1, 3)

- Reflection Matrix
 - You can find the reflection of a polygon using matrix multiplication
 - · Write the polygon vertices as a matrix
 - Multiply by $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ for x-axis $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ for y = x
 - Or $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ for y-axis $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ for y = -x
 - [Reflection Matrix] [Polygon Matrix] = [Image Matrix]

Isometry: size and shape are unchanged

• The vertices of Δ LMN are L(-3, 3), M(1, 2), and N(-2, 1). Find the reflection of Δ LMN in the y-axis.

• 593 #4-24 even, 28, 40, 42-46 all = 18

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -3 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix} \\ \begin{bmatrix} 3 & -1 & 2 \\ 3 & 2 & 1 \end{bmatrix}$$

Answers and Quiz

- <u>9.3 Answers</u>
- 9.3 Homework Quiz

- Rotation
 - Figure is turned about a point called center of rotation
 - The amount of turning is angle of rotation

Rotation Theorem

A rotation is an isometry.

- Draw a 120° rotation of ΔABC about P.
- 1. Draw a segment from A to P.

2. Draw a ray to form a 120° angle with \overline{PA}

3. Draw A' so that PA' = PA

4. Repeat steps 1-3 for each vertex. Draw ΔA'B'C'.

Draw a 50° rotation of ΔDEF about P.

Coordinate Rules for Counterclockwise Rotations about the

Origin

- 90°: (a, b) → (-b, a)
- 180°: (a, b) → (-a, -b)
- 270°: (a, b) → (b, -a)

- · Rotation Matrices (counterclockwise)
- 90°: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$
- 180°: $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
- 270°: $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
- 360°: $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
- [Rotation Matrix] [Polygon Matrix] = [Image Matrix]

• If E(-3, 2), F(-3, 4), G(1, 4), and H(2, 2). Find the image matrix for a 270° rotation about the origin.

• 602 #4-28 even, 32, 36-40 even, 41-46 all = 23

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -3 & -3 & 1 & 2 \\ 2 & 4 & 4 & 2 \end{bmatrix} \\ \begin{bmatrix} 2 & 4 & 4 & 2 \\ 3 & 3 & -1 & -2 \end{bmatrix}$$

Answers and Quiz

- <u>9.4 Answers</u>
- <u>9.4 Homework Quiz</u>

9.5 Apply Compositions of Transformations

- Composition of Transformations
 - Two or more transformations combined into a single transformation
- Glide Reflection
 - Translation followed by Reflection

9.5 APPLY COMPOSITIONS OF TRANSFORMATIONS

- The vertices of ΔABC are A(3, 2), B(-1, 3), and C(1, 1). Find the image of ΔABC after the glide reflection.
 - Translation: $(x, y) \rightarrow (x, y 4)$
 - Reflection: Over y-axis

New points after translation: A'(3, -2), B'(-1, -1), C'(1, -3) New points after reflection: A''(-3, -2), B''(1, -1), C''(-1, -3)

9.5 APPLY COMPOSITIONS OF TRAN

Composition Theorem

A composition of two (or more) isometries is

Reflections in Parallel Lines Theorem

If lines k and m are parallel, then a reflection in line k followed by a reflection in line k is the same as a translation.

If P" is the image of P, then

- 1. $\overline{PP''}$ is \perp to k and m, and
- 2. PP'' = 2d where d is the distance between k and m

9.5 Apply Compositions of Transformations

Use the figure below. The distance between line k and m is 1.6 cm.

- 1. The preimage is reflected in line k, then in line m. Describe a single transformation that maps the blue figure to the green.
- 2. What is the distance from P and P"?

- 1. Translation in the x direction
- 2. 2(1.6 cm) = 3.2 cm (Reflections in Parallel Lines Thrm)

9.5 Apply Compositions of Transfor

Reflections in Intersecting Lines Theorem

If lines k and m intersect at point P, then a reflection in line k followed by a reflection in line m is the same as a rotation about point P.

The angle of rotation is $2x^{\circ}$, where x° is the measure of the acute or right angle formed k and m.

9.5 Apply Compositions of Transformations

In the diagram, the preimage is reflected in line k, then in line m.
 Describe a single transformation that maps the blue figure to the green.

- 611 #2-30 even, 40-48 even = 20
- Extra Credit 615 #2, 8 = +2

Counterclockwise rotation of 160° about point P

Answers and Quiz

- <u>9.5 Answers</u>
- 9.5 Homework Quiz

- Line symmetry
 - The figure can be mapped to itself by a reflection
 - The line of reflection is called Line of Symmetry
- Humans tend to think that symmetry is beautiful

How many lines of symmetry does the object appear to have?

Flower: 4 lines of symmetry Sea Star: 5 lines of symmetry Goat: 1 line of symmetry

- Rotational Symmetry
 - The figure can be mapped to itself by a rotation of 180° or less about the center of the figure
 - The center of rotation is called the Center of Symmetry

Note: the 45° is not a symmetry

Does the figure have rotational symmetry? What angles?

• 621 #4-20 even, 24-34 even, 37-45 all = 24

Rhombus: 180° Octagon: 90°, 180° Triangle: none

Answers and Quiz

- <u>9.6 Answers</u>
- 9.6 Homework Quiz

- Dilation
 - Enlarge or reduce
 - Image is similar to preimage
 - Scale factor is k
 - If 0 < k < 1, then reduction
 - If k > 1, then enlargement

• The image point P' lies on \overrightarrow{CP} . The scale factor k is a positive number such that $k=\frac{CP'}{CP}$ and $k\neq 1$

 Scale factor is image preimage

Scale

- Draw and label ΔRST, then construct a dilation of ΔRST with R as the center of dilation and a scale factor of 3.
- 1. Draw $\triangle RST$, then draw rays \overrightarrow{RS} and \overrightarrow{RT}
- 2. Using a ruler, measure RS. Multiply by the scale factor. Using the ruler mark this length RS' on \overrightarrow{RS} . Repeat for the other rays.
- 3. Draw ΔR'S'T'

- Scalar matrix multiplication
 - When you multiply a number by matrix, distribute to each element.
- Simplify

•
$$5 \cdot \begin{bmatrix} 2 & 1 & -10 \\ 3 & -4 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 10 & 5 & -50 \\ 15 & -20 & 35 \end{bmatrix}$$

- Dilation using matrices (center at origin)
 - Scale factor [polygon matrix] = [image matrix]
- The vertices of ΔRST are R(1, 2), S(2, 1), and T(2, 2). Use scalar multiplication to find the vertices of ΔR'S'T' after a dilation with its center at the origin and a scale factor of 2.
- 629 #2-28 even, 32-36 even, 40, 43-49 all = 25
- Extra Credit 632 #2, 6 = +2

$$2\begin{bmatrix}1&2&2\\2&1&2\end{bmatrix}\\\begin{bmatrix}2&4&4\\4&2&4\end{bmatrix}$$

Answers and Quiz

- <u>9.7 Answers</u>
- <u>9.7 Homework Quiz</u>

